Artículo Técnico

Estudio pionero del contaje de partículas en la red de distribución de aguas del CABB en el área de Uribe Kosta durante el periodo invernal

El objetivo de este trabajo ha sido el estudiar la evolución del contaje de partículas desde la estación de tratamiento de agua potable (ETAP) de Venta Alta (Arrigorriaga), perteneciente al Consorcio de Aguas Bilbao Bizkaia (CABB), a lo largo de diferentes poblaciones de Uribe Kosta, para valorar la influencia de su situación respecto a dicha planta potabilizadora en el periodo invernal. Para dicho propósito, se utilizó un contador de partículas automático APC con muestras quincenales en 5 municipios de dicha zona.

Palabras clave

Contadores de partículas automáticos (APC), CABB, blocaje de luz, ISO, estadísticas, micras, media, mediana, moda, concentración en sólidos, USP, calibración, trazabilidad.

STUDY OF PARTICLE COUNTS IN WATER DISTRIBUTION NETWORK OF CABB ACROSS URIBE KOSTA AREA (COUNTRY BASQUE, SPAIN) DURING THE WINTER

The objective of this work was to study the evolution of particle counts from the Venta Alta drinking water treatment plant (DWTP), situated in Arrigorriaga (Country Basque, Spain), part of the Consorcio de Aguas Bilbao Bizkaia (CABB), across different towns in Uribe Kosta, to assess the influence of their location relative to the DWTP during the winter period. For this purpose, an APC automatic particle counter was used with biweekly samples in five municipalities in the area.

Keywords

Automatic particle counters (APC), CABB, light blocking, ISO, statistics, microns, mean, median, mode, solids concentration, USP, calibration, traceability.

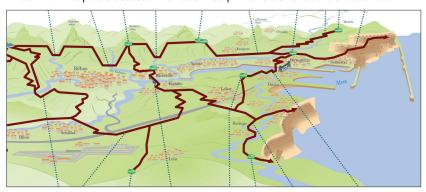
Julián Malaina Landivar

doctor en Ciencias Químicas por la Universidad del País Vasco, director de Pamas Hispania

Kyle Rimmer Greaves

director de Pamas Portugal y subdirector de Pamas Hispania

1. INTRODUCCIÓN


Correlacionar el número de partículas que contienen las aguas de consumo a lo largo de su distribución desde su salida en la planta de potabilización, es decir a la distancia de su producción al lugar de su utilización, ha sido el planteamiento de este pionero estudio. Para su realización se han realizado centenares de medidas de las diferentes muestras captadas en cinco diferentes poblaciones a lo largo de Uribe Kosta, durante este periodo invernal (Figura 1). Conocer el número y el tamaño de las partículas en las aguas que se beben en los hogares de dichos municipios es parte de la información que se analiza a continuación.

2. METODOLOGÍA

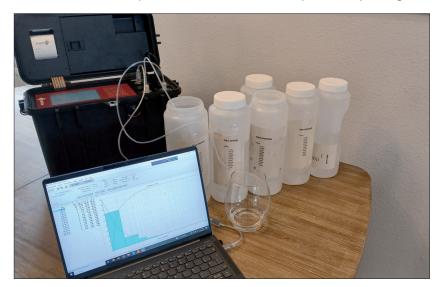
Para la ejecución de este análisis se utilizó un contador de partículas automático (APC) [1], modelo portátil S4031 de la marca Pamas (Fi**gura 2**), que permite medir in situ en cualquier punto o analizar todas las muestras en un laboratorio. Los APC se basan en un láser que va midiendo una a una cada partícula contenida en la muestra de agua a analizar que va atravesando la célula de medida del contador. Cada partícula produce individualmente una sombra y dicha sombra producida es directamente proporcional a su tamaño (expresándolo como el diámetro equivalente a una esfera que tenga la misma área a la sombra producida). Es el principio de funcionamiento del 'blocaje de luz'.

En este trabajo, se tomaron muestras cada 15 días desde el 1 de enero del 2025 hasta el 15 de marzo, es decir, en el periodo invernal, en diferentes poblaciones de la red de distribución del CABB: Leioa, Berango, Sopelana, Urduliz y Plentzia, en unos depósitos de 1 L según la norma ISO

FIGURA 1. Mapa de abastecimiento en red primaria del CABB. Fuente: CABB.

11500 [2]. Ya existe un estudio en Getxo [3], pero realizó en verano, por lo que sus resultados no se han tenido en cuenta para este artículo.

3. NORMA DE CALIBRACIÓN SEGÚN LA ISO 21501-3


Desde su fabricación, el contador automático de partículas en aguas se debe de calibrar bajo la norma de calibración ISO 21501-3 [4]. En dicha norma se detalla cómo se deben utilizar las esferas monodispersas de látex que son trazables bajo NIST de los diferentes tamaños en los que se quiera trabajar (desde 0,5 a 400 micras). En dicho protocolo de calibración, a cada tamaño de partícula le corresponde una señal eléctrica en milivoltios. De este modo, a ca-

da señal que se detecta se asocia un tamaño concreto de cada partícula, pudiendo hacer una distribución del número de partículas y sus tamaños correspondientes. También se obtienen otros parámetros estadísticos de interés como: medias, medianas, modas, coeficientes de uniformidad, tamaño de grano y concentración en sólidos.

Si se realizan las calibraciones anualmente y, además, verificaciones trimestrales/semestrales con los patrones certificados, se puede garantizar la trazabilidad en todo momento del contador de partículas automático.

Precisamente, al poder medir una a una cada partícula, es la tecnología que se usa en la Industria farma-

FIGURA 2. Contador de partículas Pamas, modelo S4031 para todo tip ode aguas.

www.tecnoaqua.es TECNSAQUA 3

céutica para el control de calidad en inyectables y poder liberar los lotes de dichos productos y en la que solo por una partícula que sobrepase el límite permitido por la legislación, obliga al fabricante a desechar todo el lote producido. Esta absoluta precisión en las medidas para aplicaciones en aguas de todo tipo (potables, residuales, marinas, de lluvia, pluviales...), que no son tan críticas, obviamente no es tan vital, ya que en aguas siempre se habla de cientos y miles de partículas por mililitro, pero permite asegurar totalmente los resultados analíticos de las muestras analizadas en este trabajo.

Este tema en concreto de la calibración en aguas y la importancia de su obligado cumplimiento ya está desarrollado específicamente por Malaina, 2024 [5].

4. RESULTADOS Y DISCUSIÓN

De cada muestra analizada se realizaron 20 medidas, además del promedio de todas ellas para poder asegurar fiabilidad de los resultados obtenidos. La influencia de la estación anual en la toma de muestras, ya sea en invierno o en verano, en el número de partículas en las aguas de consumo, ya ha sido analizada en otra publicación, en ese caso en la población cántabra de Noja [6].

Como se puede observar el la **Figura 3**, en el análisis del agua de la salida de la planta de Venta Alta en Arrigorriaga, realizado el 10/4/25, se detectaron 248 partículas. Todos los análisis han sido realizados con un contador de partículas automático APC, calibrado bajo la ISO 21501 para garantizar sus resultados. El contador mide una a una cada partícula. Las **Tablas 1**, **2**, **3**, **4** y **5** ilustran las medidas concretas por municipio: Leioa, Berango, Sopelana, Urduliz y Plentzia.

FIGURA 3. Informe del análisis del agua de salida de la ETAP Venta Alta.

	0									
PAMAS A	Partikelmess- und									
Analysesysteme		•							10.04.2025	
Cable Cabl										
Print	: A	verage v	alues of n	neasurem	ent(s) 1	, 2, 3, 4				
Measured volume Analysed Volume Dilution Factor	: 1. : 1 : -	.0 ml ml								
Mean Mode Median	: 2 : 1	op.[µm] 2.00 .50 .62	4 1	rea.[µm] .76 .50 .75	7	rol.[µm] '.15 '2.00 5.99	Un	if. Coeff	: 2.00 µm : 3.958 : 0.004 pp	
Median	. 1	.02		.75		5.99		ila coric	0.004 pp	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Diameter	Particle	pop. %	pop. %<	pop. %>	area. %	area. %<	area. %>	vol. %	vol. %<	vol. %>
1.00 - 2.00 μm	200	80.65	80.65	100.00	31.76	31.76	100.00	10.00	10.00	100.00
2.00 - 4.00 μm	33 9	13.21 3.53	93.85 97.38	19.35 6.15	20.80 15.44	52.56 68.00	68.24 47.44	13.10 16.20	23.10 39.30	90.00 76.90
4.00 - 6.00 μm 6.00 - 8.00 μm	4	1.71	99.09	2.62	14.70	82.69	32.00	21.60	60.90	60.70
8.00 - 10.00 μm	1	0.50	99.60	0.91	7.15	89.84	17.31	13.50	74.40	39.10
10.00 - 14.00 μm	1	0.40	100.00	0.40	10.16	100.00	10.16	25.60	100.00	25.60
14.00 - 15.00 μm	0	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00
15.00 - 21.00 µm	0	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00
21.00 - 25.00 μm	0	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00
25.00 - 38.00 μm	0	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00
38.00 - 50.00 μm	0	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00
50.00 - 70.00 μm	0	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00
70.00 - 100.00 μm	0	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00
100.00 - 150.00 μm	0	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00
150.00 - 200.00 μm > 200.00 μm	0	0.00	100.00 100.00	0.00 0.00	0.00	100.00 100.00	0.00 0.00	0.00	100.00 100.00	0.00 0.00
> 200.00 μm	U	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00
Total Particles:	2	248								
1005				Popul	ation (<	, diff, >)				_
90-	\									
	\									
80-	\ /									
70-	\ /									
60-	$- \setminus /-$									
50-	X							\square		_
40-	_/\					1	\perp	\square		
30-	/ \									
20-										
10-	/							+++		
o. 1			5	10		-	50		100	200
·			-		ticle size	e [μm]			-	

5. CONCLUSIONES

Los resultados en los diferentes municipios estudiados ofrecen unos resultados parecidos en el número de partículas por mililitro, entre las 272 de Leioa a las 465 de Sopelana, pero que permiten sacar algunas conclusiones.

» Para el agua deberían aplicarse las mismas normas que para otros líquidos o fluidos, por ejemplo la norma ISO 4406, que está totalmente incorporada en todas las industrias que trabajan con líquidos

4 TECNOAQUA nº 75 - septiembre-octubre 2025

TABLA 1								
RESULTADOS EN EL MUNICIPIO DE LEIOA.								
Fecha	01/01/2025	15/01/2025	01/02/2025	15/02/2025	01/03/2025	15/03/2025		
1 micra	309	312	240	209	284	280		
2 micras	44	48	65	40	51	49		
4 micras	13	16	26	14	18	23		
6 micras	4	8	13	6	10	12		
8 micras	2	5	6	2	7	8		
10 micras	1	4	3	1	5	5		
14 micras	0	2	1	1	2	3		
15 micras	0	2	1	0	2	3		
21 micras	0	1	0	0	1	1		
25 micras	0	0	0	0	1	1		
38 micras	0	0	0	0	0	0		
50 micras	0	0	0	0	0	0		
70 micras	0	0	0	0	0	0		
100 micras	0	0	0	0	0	0		
150 micras	0	0		0	0	0		
Media	1,89	2,03	2,36	2,1	2,23	2,31		
Moda	1,5	1,5	1,5	1,5	1,5	1,5		
Mediana	1,58	1,59	1,6	1,62	1,61	1,61		
Concentración sólidos (ppm)	0,041	0,05	0,016	0,112	0,152	0,125		

TABLA 2								
RESULTADOS EN EL MUNICIPIO DE BERANGO.								
Fecha	01/01/2025	15/01/2025	01/02/2025	15/02/2025	01/03/2025	15/03/2025		
1 micra	287	226	229	451	329	280		
2 micras	37	46	72	77	70	49		
4 micras	9	13	34	25	27	23		
6 micras	4	5	17	11	12	12		
8 micras	1	2	8	5	7	8		
10 micras	0	1	4	3	5	5		
14 micras	0	1	1	2	3	3		
15 micras	0	1	1	1	3	3		
21 micras	0	0	0	0	2	1		
25 micras	0	0	0	0	2	1		
38 micras	0	0	0	0	1	0		
50 micras	0	0	0	0	0	0		
70 micras	0	0	0	0	0	0		
100 micras	0	0	0	0	0	0		
150 micras	0	0	0	0	0	0		
Media	1,79	2,04	2,58	2,01	1,99	2,31		
Moda	1,5	1,5	1,5	1,5	1,5	1,5		
Mediana	1,57	1,63	1,73	1,6	1,6	1,61		
Concentración sólidos (ppm)	0,002	0,008	0,017	0,003	0,032	0,125		

Así, existe una cierta relación entre la distancia a la ETAP y el número de partículas analizado en cada población, siendo las más próximas Leioa y Berango, las que tienen una menor concentración de partículas, y las más alejadas, Sopelana, Urduliz y Plentzia, un mayor número de partículas. No obstante, hay que tenr en cuenta dos casos especiales en Sopelana y Plentzia que, por su casuística particular y circunstancial, influyen negativamente para poder obtener una conclusión definitiva entre la distancia y el número de partículas, que era el objetivo principal de este pionero estudio:

- En Sopelana (Tabla 3) se puede apreciar en los resultados de sus análisis del día 15/2/25 un aumento sustancial del número de partículas, que es debido a ciertos trabajos en las conducciones del municipio en la zona donde se captaron las muestras a analizar. Por lo que, la utilización del contaje de partículas puede ser una herramienta muy eficaz para la detección de potenciales problemas en el abastecimiento.
- En Plentzia (**Tabla 5**) se puede apreciar en los resultados de sus análisis del día 1/3/25 que el número de partículas es muy inferior al de salida de la ETAP de Arrigorriaga. Esto puede deberse a que el punto

www.tecnoaqua.es TECNSAOUA 5

TABLA 3								
RESULTADOS EN EL MUNICIPIO DE SOPELANA.								
Fecha	01/01/2025	15/01/2025	01/02/2025	15/02/2025	01/03/2025	15/03/2025		
1 micra	678	302	292	2868	817	248		
2 micras	135	61	73	962	190	52		
4 micras	44	18	26	738	84	16		
6 micras	18	6	12	559	50	6		
8 micras	9	4	6	442	31	4		
10 micras	6	2	4	298	20	3		
14 micras	3	2	2	86	8	0		
15 micras	3	1	2	57	6	0		
21 micras	2	1	1	3	0	0		
25 micras	1	1	1	2	0	0		
38 micras	1	0	0	1	0	0		
50 micras	1	0	0	1	0	0		
70 micras	0	0	0	1	0	0		
100 micras	0	0	0	1	0	0		
150 micras	0	0	0	1	0	0		
Media	2,13	1,99	2,31	3,67	2,39	2,1		
Moda	1,5	1,5	1,5	1,5	1,5	1,5		
Mediana	1,62	1,63	1,67	1,75	1,65	1,64		
Concentración sólidos (ppm)	0,157	0,004	0,033	0,522	0,059	0,006		

TABLA 4								
RESULTADOS EN EL MUNICIPIO DE URDULIZ.								
Fecha	01/01/2025	15/01/2025	01/02/2025	15/02/2025	01/03/2025	15/03/2025		
1 micra	248	782	401	350	278	246		
2 micras	52	105	73	86	62	48		
4 micras	16	23	22	33	23	21		
6 micras	6	5	7	14	11	12		
8 micras	4	2	2	6	6	8		
10 micras	3	1	1	3	3	6		
14 micras	0	0	0	1	2	4		
15 micras	0	0	0	1	2	3		
21 micras	0	0	0	1	1	2		
25 micras	0	0	0	0	1	1		
38 micras	0	0	0	0	0	1		
50 micras	0	0	0	0	0	1		
70 micras	0	0	0	0	0	0		
100 micras	0	0	0	0	0	0		
150 micras	0	0	0	0	0	0		
Media	2,1	1,78	1,95	2,27	2,25	2,56		
Moda	1,5	1,5	1,5	1,5	1,5	1,5		
Mediana	1,64	1,58	1,61	1,67	1,64	1,64		
Concentración sólidos (ppm)	0,006	0,005	0,008	0,05	0,036	0,096		

de toma de muestra está ubicado en una gran urbanización, llamada 'El Abanico de Plentzia', que dispone de su propio sistema de purificación de agua y que puede modificar los resultados que se podrían esperar a priori con respecto a otros municipios que no cuentan con ese tipo de infraestructura de purificación de sus aguas.

Las concentraciones en sólidos en todas las muestras han sido buenas, desde 0,002 ppm hasta 0,157 ppm, exceptuando solamente el dato de Sopelana del 15/2/25 que llegó a 0,522 ppm, por lo antes expuesto.

La calidad del agua de consumo en Uribe Kosta respecto al número de partículas que contienen sus aguas es buena e incluso se podrían, en alguno de los casos, utilizar hasta como aguas para inyectables en ciertas ocasiones. Pero este tema en concreto será abordado en un futuro estudio con las normativas de la legislación farmacéutica USP, EP, BP, JP, IP o KP, ya que son unas exigencias para 'jugar en otra liga', ya que es bien distinto beberse un vaso de agua con un gran número de partículas que inyectarse esa misma agua en el torrente sanguíneo. En el primer caso puede producir una gastroenteritis, pero en el segundo, hasta la muerte por trombosis.

Para el agua deberían aplicarse las mismas normas que para otros líquidos o fluidos, por ejemplo con los códigos

6 TECNOAQUA nº 75 - septiembre-octubre 2025

ISO 4406 [7], que están totalmente incorporados en todas las industrias que trabajan con líquidos. Esta norma ofrece la información del grado de limpieza de dicho fluido y es una forma de estandarizar el contaje de las partículas también en el agua, que por desgracia en este tema de control del grado de su limpieza es el pariente pobre de todos los líquidos. Se da la paradoja que se controla más la cantidad de partículas un agua de inyección en una plataforma petrolera que en una estación de tratamiento de aguas potables (Figura 4).

6. AGRADECIMIENTOS

Los autores agradecena a sus colegas Robert Celada, Iker Malaina, Koldo Zelaia, Kyle Rimmer y Felipe Martinez su colaboración en la recogida de las muestras de aguas en sus respectivas poblaciones: Leioa, Berango, Sopelana, Urduliz y Plentzia.

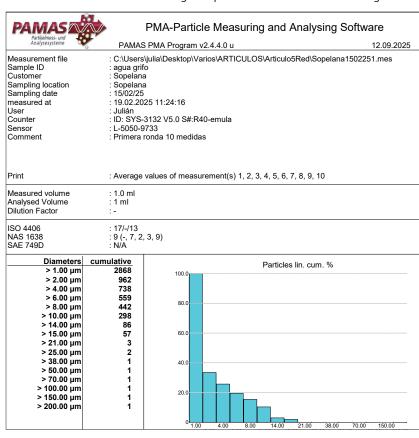
Bibliografía

[1] Malaina, J. (2021). Contadores de partículas por blocaje de luz como futura herramienta para tomar decisiones en todo tipo de plantas de tratamiento de aguas. Tecnoaqua, núm. 52, págs. 60-63.

[2] ISO 11500 Hydraulic fluid power. Determination of the particulate contamination level of a liquid sample by automatic particle counting using the light-extinction principle.

[3] Malaina, J. (2024). Estudio para contar las partículas micrónicas que contiene el agua del grifo en una vivienda en Getxo. Tecnoaqua, núm. 68, págs. 92-95.

[4] ISO 21501-3. Determination of particle size distribution. ISBN: 9780539028089.


[5] Malaina, J. (2024). Por qué calibrar un contador de partículas automático (APC) en aguas bajo la norma ISO 21501-3. Tecnoaqua, núm. 65, págs. 60-63.

[6] Malaina, J (2025). Estudio del impacto por el aumento de demanda del agua potable en una población veraniega: Villa de Noja. Tecnoaqua, num. 71, págs. 78-82.

[7] ISO 4406. Method for coding the level of contamination by solid particles. ISBN: 9780580341823.

TABLA 5								
RESULTADOS EN EL MUNICIPIO DE PLENTZIA.								
Fecha	01/01/2025	15/01/2025	01/02/2025	15/02/2025	01/03/2025	15/03/2025		
1 micra	405	333	262	526	176	262		
2 micras	69	88	85	156	50	64		
4 micras	18	30	31	54	20	24		
6 micras	8	13	12	24	10	12		
8 micras	4	6	6	12	7	6		
10 micras	3	3	4	9	4	3		
14 micras	1	2	2	5	1	2		
15 micras	1	2	2	4	1	1		
21 micras	0	0	1	2	0	1		
25 micras	0	0	1	2	0	0		
38 micras	0	0	0	1	0	0		
50 micras	0	0	0	1	0	0		
70 micras	0	0	0	0	0	0		
100 micras	0	0	0	0	0	0		
150 micras	0	0	0	0	0	0		
Media	1,95	2,26	2,49	2,38	2,47	2,27		
Moda	1,5	1,5	1,5	1,5	1,5	1,5		
Mediana	1,6	1,68	1,74	1,71	1,7	1,66		
Concentración sólidos (ppm)	0,018	0,018	0,029	0,063	0,010	0,016		

FIGURA 4. Informe de un análisis de agua expresando sus resultados en códigos ISO.

www.tecnoaqua.es TECN@AQUA 7